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An integral method allowing for thermal acceleration of the flow is used to obtain 
data on drag and heat transfer in the laminar flow of helium at supercritical pres- 
sure in a uniformly heated circular pipe. 

The problem of heat transfer in the flow of supercritical helium in a heated channel of 
constant cross section models thermal and hydrodynamic processes in the heat-exchanging 
through parts of cryogenic power plants. Experimental and theoretical studies to data have 
essentially been limited to the case of turbulent flow, and the literature already contains 
practical recommendations on calculating heat transfer in this instance [I]. Nevertheless, 
the possibility of cryostatting systems by laminar convection of the cryogen should not be 
excluded. The present work reports generalized results of analytical calculation of drag 
and heat transfer in the viscous flow of supercritical helium in a circular tube at a con- 
stant heat flux on the wall. 

The system of continuity, motion, and energy equations was solved for the region of 
quasistable heat transfer using an integral method which is a modification of the calculating 
scheme of Petukhov and Popov [2]. The principal modification is allowance for thermal ac- 
celeration of the flow within the framework of a unidimensional approach. Here, we use the 
hypothesis of similitude of the axial velocity profile, such as was employed in [3-5], for 
example. 

The motion and energy equations have the form [2] 

Ou dp 1 0 (rT), (i) pu - -  
Ox dx r Or 

Oh 1 0 pu -- - -  (rq), ( 2 )  
Ox r Or 

Ou ~ Oh 
where T ~t and q 

Or cp Or 

To approximately allow for the acceleration and exclude pressure from the variables, we 
will use the assumption of similitude of the profile of u in the form (see [3], for example) 

a --0 or - -- , 
Ox Ox u dx 

ro 

2 ~ urdr i s  t h e  m e a n  v e l o c i t y  i n  a c r o s s  s e c t i o n .  where u---- r--~0 
0 

Substitution of Eq. (3) into (i), multiplication of the terms of the latter by rdr, and 
subsequent integration over the radius from 0 to ro gives 

Fo 

dp 2 1 d-u S pu2rdr 2 . . . .  Xw, (4) 
dx r~ u dx ro 

0 

where rw is the friction stress on the wall. 

Having expressed the terms of Eq. (i) with the acceleration and pressure gradient 
through (3) and (4), respectively, and having integrated from 0 to r, we find the radial dis- 

tribution of the shear stress: 
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�9 r Q I _1 d~ [ /  r \2 i'pu2rdr_ i 9uZrdr]. ) (5,) 
~w ro r %  u d x  , .j j 

n 0 

Ou 
Now, having replaced T in the left side of Eq. (5) by - ,~ -~r and having integrated the 

resulting equation from r to to, we can derive an implicit expression for velocity: 
t- 
n~ j" Ww--+r 1 

r~ / r o r 

Let us transform the term - 
u dx 

 I>i ]I -~ dx ( ~oo 9t~2rdr - f' 9122rdr dr. (6) 
�9 \ 

0 0 

in (6), allowing for acceleration of the flow. As our 

calculations showed, it can be assumed with a high degree of accuracy that 

pu = PZ ~ = const, (7) 

where Pl is the density calculated from the mean mass temperature T I. Differentiation of 
Eq. (7) and subsequent transformations give 

1 ~ = 1___ dg____L=__ l_j__ d9 t dTl ,~, 2qw~____i_ (8) 
dx 9l dx 9Z dTz dx pucv~,ro ~ 

where B~ and Cpl is the coefficient of cubical expansion and the isobaric specific heat, re- 
spectively, calculated from T I. The accuracy of approximation (8) is determined mainly by 
the contribution of the Joule--Thomson effect to the increase in temperature along the tube 
axis -- which, according to estimates, is negligibly small. 

Changing over to the dimensionless coordinate Y = 1 -- r/ro and allowing for (8), we can 
represent Eq. (6) in the form 

Y 

0 

A 
~ (~ - Y) 

[(I - -  y)= W ( 0 ) -  ~ (Y)]} dY, 

where we have used the notation 

(9) 

1 

A = 2fl-~-_ zflwr~ T (Y )  = [ 9u2(I --- Y) dY. 
9 u Cp l Y 

To determine the quantity T w in Eq. (9), we can use the flow-rate equation 9u= 2~ 9u 

(i- F)dY. Having replaced the quantity u in the integrand by Eq. (9) and solving the r~ - 
ing equation for Zw, we find 

1 Y l Y 

"~w= [~--2A I 9(I--Y){([(I--Y)2~(O)--'F(Y)].. i~(X__y) idF]/[ 2rol 9 dY 1 (I--Y)[",.! l--'-~J dFj dY ] t t  
0 o o 0 (I0) 

When A = 0, i.e., in the absence of acceleration, Eqs. (9) and (I0) are similar to those 
given by the method in [2]. 

The enthalpy distribution is determined by the same method as in [2]: 
1 Y 

2q~r~ [2 ~ f l u  cvL Q~)2(~,]__y d Y - -  t', cv~ r dY] , (11) 
0 0 

h = h  z + 

1 

where (F)= i p u ( 1 - - Y )  dY. 

Accordingly, the expression for the Nusselt number has the form [2] 

J L _  _~ r 
Nu= 2qwr~ = 2 % cp dY , 

)~z (Tw-- Tz ) 9-~(1--Y) 
0 

where Cp = (h w -- hl)/(T w- Tl). 

The friction and total-drag coefficients are respectively determined thus: 
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Fig. i. Dependence of friction coefficient on tem- 
perature factor for helium in the state of an ideal 
gas: i) our calculation; 2) [6]; 3) [7]; 4) [8]; 
5) calculation at A = 0. 

Fig. 2. Dependence of the friction coefficient of 
supercritical helium on the temperature factor for 
p = 0.3 MPa: i) Eq. (15); 2) T l = 6-15~ 3) T l = 
T m = 5.6~ 4) T Z < Tm; 5) calculation with A = 0, 
TZ = 6-15~ 

2~w 9l. 
CI ~ -- , 

pU ~ 

�9 N U  " 2 T ( 0 )  
~z = rop__.~ L dp = cr + ~z (Tw -- ~ ) Re Pr pu u 

pu ~ dx 

(13) 

(14) 

The interaction procedure used in the present work to calculate Nu, cf, and ~Z from 
Eqs. (12)-(14), with allowance for (9)-(11), differs from that described in [2] by the fact 
that the initial data are assigned values of parameters which are usually assumed to be 
known -- specifically, the tube diameter, heat flux on the wall, and the flow rate, pressure, 
and mean mass temperature of the liquid in the cross section. 

To check the above method, we calculated the drag and heat transfer for a theoretically 
[6, 7] and experimentally [8] investigated case of laminar flow of helium in a tube. The 
helium was in the state of an ideal gas, when p = 0RT. The: calculation was performed for p = 
0.1 MPa in the temperature range from 200 to 1500~ Here, the temperature factor Tw/T l 
ranged from i to 1.8. In this regio n of values of the state parameters, Cp = const, and the 
following approximation holds with a high degree of accuracy for viscosity and thermal con- 
ductivity: ~/~o = ~/%o = (T/To) ~ The results of calculation of the friction coefficient 
are shown in Fig. i. Also shown here are the relations for cf/Cfo obtained by numerical so- 
lution of the complete conservation equations in the boundary-layer approximation [6, 7] 
(curves 2 and 3) and experimentally [8] (curve 4). It is apparent that our data agrees well 
with the results of calculations performed by more precise methods, considering both axial 
and radial convection, and correlates well with measured values of cf. Calculation by the 
integral method [2], i.e. without allowance for thermal acceleration, leads to serious under- 
estimation of the friction coefficients (curve 5). The calculated Nusselt numbers show that 
heat transfer is very slightly dependent on the temperature factor (Table I), which agrees 
with the well-known literature data [6-9]. Thus, the proposed modification of the calculat- 
ing method in [2] makes it possible to correctly predict friction and heat-transfer charac- 
teristics in the laminar pipe flow of a monoatomic ideal gas with variable properties. This 
provides grounds for using the above method to predict drag coefficients and Nusselt numbers 
for helium in the single-phase, near-critical region of state parameters. 

The calculations for supercritical helium embraced the temperature and pressure ranges 
characteristic of cryogenic power plants currently being designed. The value of T l was taken 
equal to T m • 0.05n (where n = 0, i, 2, ..., i0, where T m is the pseudocritical temperature 
at a prescribed pressure) and 6, 7, 8, 9, i0, and 15~ Pressure ranged from 0.25 (P/Pc = 
i.ii) to 2.0 MPa. The heat flux on the wall was increased until the temperature on the tube 
axis for the prescribed Tl was at least 5~ The properties of helium were calculated from 
the data in [i0]. It was first established that the results for heat transfer and drag cor- 
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TABLE i. Dependence of the Nusselt Number on the 
Temperature Factor for T l = 700~ p = 0.i MPa 

Twit l 1,012 1,-~ 1,407 1,601 ! ,766 

Nu/Nuo 1,01I 1,015 1,008 0,993 0>962 
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Fig. 3. Generalization of data 
on total drag: i) Eq. (16); 2) 
p = 0.25 MPa; 3) 4; 4) 6; 5) i0. 

responding to R = 102 and 103 were identical, so all of the calculations were performed at a 
constant Reynolds number of 103 . The results of calculation of cf, ~Z, and Nu are shown in 
Figs. 2-4. 

Figure 2 shows the dependence of the ratio of the friction coefficient to its value at 
constant properties on the temperature factor for p = 0.3 MPa. It is apparent that, at T;< 
Tm, the value of cf/cfo can be described by the equation 

c j~ro=7"w/~  , (15) 

which to within 1.5% approximates the calculated results for helium in the state of an ideal 
gas (Fig. i). At mean mass temperatures lower than Tm, there is a decrease in cf relative 
to cfo, reaching about 10%. The results of calculations without allowance for acceleration 
for T l > Tm lie significantly below Eq. (16). The laws reflected by Fig. 2 remain in force 
at other pressures as well. 

Figure 3 shows data on the total drag. Also shown here is the following dependence for 
an ideal gas 

~z/c 4 = 2,1Tw/~ - -  1.1, (16) 

which can be derived from Eq. (14) if we consider that ~ = lIT t, ~u ~ Nu 0 4.86, c% = i6/Re, 
2~(0) 

and that the quantity --~ , in accordance with the calculations, is a constant equal to puu 
1.35. It is apparent that this dependence serves as a satisfactory approximation for super- 
critical helium as well, although here it should be kept in mind that the ratio ~Z/cfo may 
be about 20% lower than Eq. (16) at p > 1 MPa and T z < T m. 

The data on heat transfer (Fig. 4) can be generalized with an accuracy sufficient for 
engineering applications by the following relations: 

~r ~/cpt < 1  Nu/Nu o : ~ kl  )-0,3 (17) 
9w @ ~ w 

- k )o,2 
: " ' W  . for c P / c p l > I  Nu/Nuo= ( c ~  %l 
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Fig. 4. Generalization of data on heat transfer: 
a) for ~p/C~1<l; b) for~/c~? > I; l(a)-Eq. (17); 
l(b) -- Eq. ~18); 2 -- p =F0.~5 MPa; 3 -- 0.275; 4 -- 
0.3; 5 -- 0.4; 6 -- 0.6; 7-- 1.0; 8 -- 2.0. 

The calculations show that, at a prescribed pressure, the greatest reduction in Nu relative 
to Nuo occurs in the vicinity T 1 = T m. A relative increase in heat transfer is generally 
seen when T 1 < Tm and Cp/Cp/ > i. Ignoring thermal accleration leads to some underestima-_ 
tion of heat transfer relative to correlations (17); (18), reaching about 10% at Cp/Cp/ < i. 

In conclusion, we should note that Eq. (17) also gives reasonable results for helium in 
the state of a perfect gas. In fact, assuming P//Pw = Tw/T/, Cp//Cp = i, and Xl/Xw = (Tl/ 
Tw )~ we obtain 

Nu/Nu0 = (Tw[ ~ )-o.oo (19)  

I n  t h e  r a n g e  1 < Tw/Tl~. 2,  t h i s  r e l a t i o n  a g r e e s  w i t h i n  10% w i t h  w e l l - k n o w n  c a l c u l a t e d  and 

empirical data [6-9]. 

NOTATION 

_ 2 r~ __ 2 ro 

( urdr, velocity; pu -~02 ! purdr, mean mass velocity; h en- u, axial velocity;u=--~ mean = 
r0 ~ 

thalpy; hl, mean mass enthalpy; T, temperature; T1, mean mass temperature; Tm, pseudocritical 
temperature; p, pressure; Pc, critical pressure; x, coordinate along axis; r, running radius; 
ro, tube radius; Y = 1- r/ro, dimensionless coordinate; T, shear stress; q, heat flux; p, 
density; X, thermal conductivity; p, absolute viscosity; Cp, specific heat at constant vol- 
ume; Cp = (h w --h/)/(T w --T/), mean specific heat; 6, coefficient of cubical expansion; cf, 
friction coefficient; cfo = 16/Re, friction coefficient for the case of constant properties; 
~E, total-drag coefficient; Nu, Nusselt number; Nuo = 4.36, Nusselt number for the case of 
constant properties; Re, Reynolds number; Pr, Prandtl number; R, universal gas constant. In- 
dices: w, wall; l, liquid; O, constant pressure. 
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HEAT-TRANSFER EQUATION FOR LAMINAR FLOW OF AROMATIC 

HYDROCARBONS AT SUPERCRITICAL PRESSURES 

F. I. Kalbaliev, F. K. Babaev, 
and G. I. Isaev 

UDC 536.242:62-987/-988 

Experimental data on local heat-transfer coefficients for toluene and benzene as- 
cending and descending in a vertical pipe is generalized in the form of criterional 
equations. 

Determining the wall temperature of apparatus operating at supercritical pressures is 
one of the main problems of convective heat transfer, the solution of which has been the goal 
of numerous works on turbulent liquid flow. Heat transfer has been studied for laminar flow 
and supercritical pressure only for the aromatic hydrocarbons toluene and benzene [1-9] and 
po!ymethylphenylsiloxane liquid [i0]. 

Tests on heat transfer involving aromatic hydrocarbons were conducted in a closed cir- 
cuit on an experimental tube made of stainless steel with an inside diameter d = 3 mm, wall 
thickness ~ = 0.5 mm, and length of heated section 1 = 200-220 mm. The tests were conducted 
in the following parameter ranges: 

for toluene 

for benzene 

P/Pcr = 1 .06 - -  3 . 0 7 ,  T l [Tcr = 0 . 4 9  - -  1 .05 ,  Tw/Tcr = 0 , 5 5  - -  1 .56 ,  

q = (0 ,31  - -  3 . 9 0 ) .  l05 w / m 2 ,  R e  = 3 7 5  - -  4 2 0 0 ;  

~ P c r  = 1 . 2 1 - - 2 . 6 3 ,  ~ / ~ r  = 0 . 5 2 - - 1 . 1 2 ,  T w / ~ r  = 0 , 4 4 - - 1 . 5 5 ,  

q = ( O . 1 2 - - 4 , 5 ) ' i 0 5 W / m  2 , R e  = 3 2 0 - - 5 3 0 0 .  

Located ahead of the heated section of the tube is a hydrodynamic stabilization section 
of length 1A.s = O.06d Re. The length of the initial, thermal section, at p > Pcr, T/ <<Tm, 
and Tw<< Tm, is roughly (i/Pe)(x/d) = 0.01. At p > Pcr, T1 < Tm, and Tw ~Tm, the tempera- 
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